\(\int \frac {\text {csch}^2(c+d x)}{a+b \sinh (c+d x)} \, dx\) [246]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 80 \[ \int \frac {\text {csch}^2(c+d x)}{a+b \sinh (c+d x)} \, dx=\frac {b \text {arctanh}(\cosh (c+d x))}{a^2 d}-\frac {2 b^2 \text {arctanh}\left (\frac {b-a \tanh \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2+b^2}}\right )}{a^2 \sqrt {a^2+b^2} d}-\frac {\coth (c+d x)}{a d} \]

[Out]

b*arctanh(cosh(d*x+c))/a^2/d-coth(d*x+c)/a/d-2*b^2*arctanh((b-a*tanh(1/2*d*x+1/2*c))/(a^2+b^2)^(1/2))/a^2/d/(a
^2+b^2)^(1/2)

Rubi [A] (verified)

Time = 0.11 (sec) , antiderivative size = 80, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {2881, 12, 2826, 3855, 2739, 632, 210} \[ \int \frac {\text {csch}^2(c+d x)}{a+b \sinh (c+d x)} \, dx=-\frac {2 b^2 \text {arctanh}\left (\frac {b-a \tanh \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2+b^2}}\right )}{a^2 d \sqrt {a^2+b^2}}+\frac {b \text {arctanh}(\cosh (c+d x))}{a^2 d}-\frac {\coth (c+d x)}{a d} \]

[In]

Int[Csch[c + d*x]^2/(a + b*Sinh[c + d*x]),x]

[Out]

(b*ArcTanh[Cosh[c + d*x]])/(a^2*d) - (2*b^2*ArcTanh[(b - a*Tanh[(c + d*x)/2])/Sqrt[a^2 + b^2]])/(a^2*Sqrt[a^2
+ b^2]*d) - Coth[c + d*x]/(a*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 2739

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[2*(e/d), Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 2826

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[b/(
b*c - a*d), Int[1/(a + b*Sin[e + f*x]), x], x] - Dist[d/(b*c - a*d), Int[1/(c + d*Sin[e + f*x]), x], x] /; Fre
eQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]

Rule 2881

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2
- b^2))), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])
^n*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m +
n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||
 !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = -\frac {\coth (c+d x)}{a d}-\frac {\int \frac {b \text {csch}(c+d x)}{a+b \sinh (c+d x)} \, dx}{a} \\ & = -\frac {\coth (c+d x)}{a d}-\frac {b \int \frac {\text {csch}(c+d x)}{a+b \sinh (c+d x)} \, dx}{a} \\ & = -\frac {\coth (c+d x)}{a d}-\frac {b \int \text {csch}(c+d x) \, dx}{a^2}+\frac {b^2 \int \frac {1}{a+b \sinh (c+d x)} \, dx}{a^2} \\ & = \frac {b \text {arctanh}(\cosh (c+d x))}{a^2 d}-\frac {\coth (c+d x)}{a d}-\frac {\left (2 i b^2\right ) \text {Subst}\left (\int \frac {1}{a-2 i b x+a x^2} \, dx,x,\tan \left (\frac {1}{2} (i c+i d x)\right )\right )}{a^2 d} \\ & = \frac {b \text {arctanh}(\cosh (c+d x))}{a^2 d}-\frac {\coth (c+d x)}{a d}+\frac {\left (4 i b^2\right ) \text {Subst}\left (\int \frac {1}{-4 \left (a^2+b^2\right )-x^2} \, dx,x,-2 i b+2 a \tan \left (\frac {1}{2} (i c+i d x)\right )\right )}{a^2 d} \\ & = \frac {b \text {arctanh}(\cosh (c+d x))}{a^2 d}-\frac {2 b^2 \text {arctanh}\left (\frac {b-a \tanh \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2+b^2}}\right )}{a^2 \sqrt {a^2+b^2} d}-\frac {\coth (c+d x)}{a d} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.82 (sec) , antiderivative size = 113, normalized size of antiderivative = 1.41 \[ \int \frac {\text {csch}^2(c+d x)}{a+b \sinh (c+d x)} \, dx=-\frac {a \coth \left (\frac {1}{2} (c+d x)\right )+2 b \left (-\frac {2 b \arctan \left (\frac {b-a \tanh \left (\frac {1}{2} (c+d x)\right )}{\sqrt {-a^2-b^2}}\right )}{\sqrt {-a^2-b^2}}-\log \left (\cosh \left (\frac {1}{2} (c+d x)\right )\right )+\log \left (\sinh \left (\frac {1}{2} (c+d x)\right )\right )\right )+a \tanh \left (\frac {1}{2} (c+d x)\right )}{2 a^2 d} \]

[In]

Integrate[Csch[c + d*x]^2/(a + b*Sinh[c + d*x]),x]

[Out]

-1/2*(a*Coth[(c + d*x)/2] + 2*b*((-2*b*ArcTan[(b - a*Tanh[(c + d*x)/2])/Sqrt[-a^2 - b^2]])/Sqrt[-a^2 - b^2] -
Log[Cosh[(c + d*x)/2]] + Log[Sinh[(c + d*x)/2]]) + a*Tanh[(c + d*x)/2])/(a^2*d)

Maple [A] (verified)

Time = 0.77 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.21

method result size
derivativedivides \(\frac {-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a}-\frac {1}{2 a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}-\frac {b \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a^{2}}+\frac {2 b^{2} \operatorname {arctanh}\left (\frac {2 a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-2 b}{2 \sqrt {a^{2}+b^{2}}}\right )}{a^{2} \sqrt {a^{2}+b^{2}}}}{d}\) \(97\)
default \(\frac {-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a}-\frac {1}{2 a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}-\frac {b \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a^{2}}+\frac {2 b^{2} \operatorname {arctanh}\left (\frac {2 a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-2 b}{2 \sqrt {a^{2}+b^{2}}}\right )}{a^{2} \sqrt {a^{2}+b^{2}}}}{d}\) \(97\)
risch \(-\frac {2}{d a \left ({\mathrm e}^{2 d x +2 c}-1\right )}+\frac {b \ln \left ({\mathrm e}^{d x +c}+1\right )}{a^{2} d}-\frac {b \ln \left ({\mathrm e}^{d x +c}-1\right )}{a^{2} d}+\frac {b^{2} \ln \left ({\mathrm e}^{d x +c}+\frac {a \sqrt {a^{2}+b^{2}}-a^{2}-b^{2}}{\sqrt {a^{2}+b^{2}}\, b}\right )}{\sqrt {a^{2}+b^{2}}\, d \,a^{2}}-\frac {b^{2} \ln \left ({\mathrm e}^{d x +c}+\frac {a \sqrt {a^{2}+b^{2}}+a^{2}+b^{2}}{\sqrt {a^{2}+b^{2}}\, b}\right )}{\sqrt {a^{2}+b^{2}}\, d \,a^{2}}\) \(179\)

[In]

int(csch(d*x+c)^2/(a+b*sinh(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d*(-1/2/a*tanh(1/2*d*x+1/2*c)-1/2/a/tanh(1/2*d*x+1/2*c)-1/a^2*b*ln(tanh(1/2*d*x+1/2*c))+2/a^2*b^2/(a^2+b^2)^
(1/2)*arctanh(1/2*(2*a*tanh(1/2*d*x+1/2*c)-2*b)/(a^2+b^2)^(1/2)))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 479 vs. \(2 (77) = 154\).

Time = 0.28 (sec) , antiderivative size = 479, normalized size of antiderivative = 5.99 \[ \int \frac {\text {csch}^2(c+d x)}{a+b \sinh (c+d x)} \, dx=-\frac {2 \, a^{3} + 2 \, a b^{2} - {\left (b^{2} \cosh \left (d x + c\right )^{2} + 2 \, b^{2} \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + b^{2} \sinh \left (d x + c\right )^{2} - b^{2}\right )} \sqrt {a^{2} + b^{2}} \log \left (\frac {b^{2} \cosh \left (d x + c\right )^{2} + b^{2} \sinh \left (d x + c\right )^{2} + 2 \, a b \cosh \left (d x + c\right ) + 2 \, a^{2} + b^{2} + 2 \, {\left (b^{2} \cosh \left (d x + c\right ) + a b\right )} \sinh \left (d x + c\right ) - 2 \, \sqrt {a^{2} + b^{2}} {\left (b \cosh \left (d x + c\right ) + b \sinh \left (d x + c\right ) + a\right )}}{b \cosh \left (d x + c\right )^{2} + b \sinh \left (d x + c\right )^{2} + 2 \, a \cosh \left (d x + c\right ) + 2 \, {\left (b \cosh \left (d x + c\right ) + a\right )} \sinh \left (d x + c\right ) - b}\right ) + {\left (a^{2} b + b^{3} - {\left (a^{2} b + b^{3}\right )} \cosh \left (d x + c\right )^{2} - 2 \, {\left (a^{2} b + b^{3}\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) - {\left (a^{2} b + b^{3}\right )} \sinh \left (d x + c\right )^{2}\right )} \log \left (\cosh \left (d x + c\right ) + \sinh \left (d x + c\right ) + 1\right ) - {\left (a^{2} b + b^{3} - {\left (a^{2} b + b^{3}\right )} \cosh \left (d x + c\right )^{2} - 2 \, {\left (a^{2} b + b^{3}\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) - {\left (a^{2} b + b^{3}\right )} \sinh \left (d x + c\right )^{2}\right )} \log \left (\cosh \left (d x + c\right ) + \sinh \left (d x + c\right ) - 1\right )}{{\left (a^{4} + a^{2} b^{2}\right )} d \cosh \left (d x + c\right )^{2} + 2 \, {\left (a^{4} + a^{2} b^{2}\right )} d \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + {\left (a^{4} + a^{2} b^{2}\right )} d \sinh \left (d x + c\right )^{2} - {\left (a^{4} + a^{2} b^{2}\right )} d} \]

[In]

integrate(csch(d*x+c)^2/(a+b*sinh(d*x+c)),x, algorithm="fricas")

[Out]

-(2*a^3 + 2*a*b^2 - (b^2*cosh(d*x + c)^2 + 2*b^2*cosh(d*x + c)*sinh(d*x + c) + b^2*sinh(d*x + c)^2 - b^2)*sqrt
(a^2 + b^2)*log((b^2*cosh(d*x + c)^2 + b^2*sinh(d*x + c)^2 + 2*a*b*cosh(d*x + c) + 2*a^2 + b^2 + 2*(b^2*cosh(d
*x + c) + a*b)*sinh(d*x + c) - 2*sqrt(a^2 + b^2)*(b*cosh(d*x + c) + b*sinh(d*x + c) + a))/(b*cosh(d*x + c)^2 +
 b*sinh(d*x + c)^2 + 2*a*cosh(d*x + c) + 2*(b*cosh(d*x + c) + a)*sinh(d*x + c) - b)) + (a^2*b + b^3 - (a^2*b +
 b^3)*cosh(d*x + c)^2 - 2*(a^2*b + b^3)*cosh(d*x + c)*sinh(d*x + c) - (a^2*b + b^3)*sinh(d*x + c)^2)*log(cosh(
d*x + c) + sinh(d*x + c) + 1) - (a^2*b + b^3 - (a^2*b + b^3)*cosh(d*x + c)^2 - 2*(a^2*b + b^3)*cosh(d*x + c)*s
inh(d*x + c) - (a^2*b + b^3)*sinh(d*x + c)^2)*log(cosh(d*x + c) + sinh(d*x + c) - 1))/((a^4 + a^2*b^2)*d*cosh(
d*x + c)^2 + 2*(a^4 + a^2*b^2)*d*cosh(d*x + c)*sinh(d*x + c) + (a^4 + a^2*b^2)*d*sinh(d*x + c)^2 - (a^4 + a^2*
b^2)*d)

Sympy [F]

\[ \int \frac {\text {csch}^2(c+d x)}{a+b \sinh (c+d x)} \, dx=\int \frac {\operatorname {csch}^{2}{\left (c + d x \right )}}{a + b \sinh {\left (c + d x \right )}}\, dx \]

[In]

integrate(csch(d*x+c)**2/(a+b*sinh(d*x+c)),x)

[Out]

Integral(csch(c + d*x)**2/(a + b*sinh(c + d*x)), x)

Maxima [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.71 \[ \int \frac {\text {csch}^2(c+d x)}{a+b \sinh (c+d x)} \, dx=\frac {b^{2} \log \left (\frac {b e^{\left (-d x - c\right )} - a - \sqrt {a^{2} + b^{2}}}{b e^{\left (-d x - c\right )} - a + \sqrt {a^{2} + b^{2}}}\right )}{\sqrt {a^{2} + b^{2}} a^{2} d} + \frac {b \log \left (e^{\left (-d x - c\right )} + 1\right )}{a^{2} d} - \frac {b \log \left (e^{\left (-d x - c\right )} - 1\right )}{a^{2} d} + \frac {2}{{\left (a e^{\left (-2 \, d x - 2 \, c\right )} - a\right )} d} \]

[In]

integrate(csch(d*x+c)^2/(a+b*sinh(d*x+c)),x, algorithm="maxima")

[Out]

b^2*log((b*e^(-d*x - c) - a - sqrt(a^2 + b^2))/(b*e^(-d*x - c) - a + sqrt(a^2 + b^2)))/(sqrt(a^2 + b^2)*a^2*d)
 + b*log(e^(-d*x - c) + 1)/(a^2*d) - b*log(e^(-d*x - c) - 1)/(a^2*d) + 2/((a*e^(-2*d*x - 2*c) - a)*d)

Giac [A] (verification not implemented)

none

Time = 0.34 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.54 \[ \int \frac {\text {csch}^2(c+d x)}{a+b \sinh (c+d x)} \, dx=\frac {\frac {b^{2} \log \left (\frac {{\left | 2 \, b e^{\left (d x + c\right )} + 2 \, a - 2 \, \sqrt {a^{2} + b^{2}} \right |}}{{\left | 2 \, b e^{\left (d x + c\right )} + 2 \, a + 2 \, \sqrt {a^{2} + b^{2}} \right |}}\right )}{\sqrt {a^{2} + b^{2}} a^{2}} + \frac {b \log \left (e^{\left (d x + c\right )} + 1\right )}{a^{2}} - \frac {b \log \left ({\left | e^{\left (d x + c\right )} - 1 \right |}\right )}{a^{2}} - \frac {2}{a {\left (e^{\left (2 \, d x + 2 \, c\right )} - 1\right )}}}{d} \]

[In]

integrate(csch(d*x+c)^2/(a+b*sinh(d*x+c)),x, algorithm="giac")

[Out]

(b^2*log(abs(2*b*e^(d*x + c) + 2*a - 2*sqrt(a^2 + b^2))/abs(2*b*e^(d*x + c) + 2*a + 2*sqrt(a^2 + b^2)))/(sqrt(
a^2 + b^2)*a^2) + b*log(e^(d*x + c) + 1)/a^2 - b*log(abs(e^(d*x + c) - 1))/a^2 - 2/(a*(e^(2*d*x + 2*c) - 1)))/
d

Mupad [B] (verification not implemented)

Time = 0.44 (sec) , antiderivative size = 360, normalized size of antiderivative = 4.50 \[ \int \frac {\text {csch}^2(c+d x)}{a+b \sinh (c+d x)} \, dx=\frac {2}{a\,d-a\,d\,{\mathrm {e}}^{2\,c+2\,d\,x}}+\frac {b^2\,\ln \left (128\,a^4\,{\mathrm {e}}^{d\,x}\,{\mathrm {e}}^c-64\,a\,b^3-64\,a^3\,b-32\,b^3\,\sqrt {a^2+b^2}+32\,b^4\,{\mathrm {e}}^{d\,x}\,{\mathrm {e}}^c-64\,a^2\,b\,\sqrt {a^2+b^2}+160\,a^2\,b^2\,{\mathrm {e}}^{d\,x}\,{\mathrm {e}}^c+128\,a^3\,{\mathrm {e}}^{d\,x}\,{\mathrm {e}}^c\,\sqrt {a^2+b^2}+96\,a\,b^2\,{\mathrm {e}}^{d\,x}\,{\mathrm {e}}^c\,\sqrt {a^2+b^2}\right )\,\sqrt {a^2+b^2}}{d\,a^4+d\,a^2\,b^2}-\frac {b^2\,\ln \left (32\,b^3\,\sqrt {a^2+b^2}-64\,a\,b^3-64\,a^3\,b+128\,a^4\,{\mathrm {e}}^{d\,x}\,{\mathrm {e}}^c+32\,b^4\,{\mathrm {e}}^{d\,x}\,{\mathrm {e}}^c+64\,a^2\,b\,\sqrt {a^2+b^2}+160\,a^2\,b^2\,{\mathrm {e}}^{d\,x}\,{\mathrm {e}}^c-128\,a^3\,{\mathrm {e}}^{d\,x}\,{\mathrm {e}}^c\,\sqrt {a^2+b^2}-96\,a\,b^2\,{\mathrm {e}}^{d\,x}\,{\mathrm {e}}^c\,\sqrt {a^2+b^2}\right )\,\sqrt {a^2+b^2}}{d\,a^4+d\,a^2\,b^2}-\frac {b\,\ln \left (32\,{\mathrm {e}}^{d\,x}\,{\mathrm {e}}^c-32\right )}{a^2\,d}+\frac {b\,\ln \left (32\,{\mathrm {e}}^{d\,x}\,{\mathrm {e}}^c+32\right )}{a^2\,d} \]

[In]

int(1/(sinh(c + d*x)^2*(a + b*sinh(c + d*x))),x)

[Out]

2/(a*d - a*d*exp(2*c + 2*d*x)) + (b^2*log(128*a^4*exp(d*x)*exp(c) - 64*a*b^3 - 64*a^3*b - 32*b^3*(a^2 + b^2)^(
1/2) + 32*b^4*exp(d*x)*exp(c) - 64*a^2*b*(a^2 + b^2)^(1/2) + 160*a^2*b^2*exp(d*x)*exp(c) + 128*a^3*exp(d*x)*ex
p(c)*(a^2 + b^2)^(1/2) + 96*a*b^2*exp(d*x)*exp(c)*(a^2 + b^2)^(1/2))*(a^2 + b^2)^(1/2))/(a^4*d + a^2*b^2*d) -
(b^2*log(32*b^3*(a^2 + b^2)^(1/2) - 64*a*b^3 - 64*a^3*b + 128*a^4*exp(d*x)*exp(c) + 32*b^4*exp(d*x)*exp(c) + 6
4*a^2*b*(a^2 + b^2)^(1/2) + 160*a^2*b^2*exp(d*x)*exp(c) - 128*a^3*exp(d*x)*exp(c)*(a^2 + b^2)^(1/2) - 96*a*b^2
*exp(d*x)*exp(c)*(a^2 + b^2)^(1/2))*(a^2 + b^2)^(1/2))/(a^4*d + a^2*b^2*d) - (b*log(32*exp(d*x)*exp(c) - 32))/
(a^2*d) + (b*log(32*exp(d*x)*exp(c) + 32))/(a^2*d)